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PULSE COMPRESSION DEGRADATION DUE TO
OPEN LOOP ADAPTIVE CANCELLATION,

PART III

1. INTRODUCTION

An exact expression for the perturbed sidelobe level of a compressed pulse that has been pre-
processed through an adaptive canceller is derived in Ref. 1. The pertinent assumptions of that
analysis are

I. the adaptive canceller is implemented using the Sampled Matrix Inversion (SMI) algorithm
121 or its equivalent, the Gram-Schmidt canceller 131

2. the input noises are temporally independent and Gaussian

3. the desired signal's input vector (or code) is completely contained within the samph.s that
were used to calculate the adaptive weights and is only present in the main channel, and

4. the adaptive weights are computed from the same data set to which they are applied (con-
current processing).

Earlier research has shown that because of finite sampling, the quiescent compressed pulse
sidelobe ievels are degraded by preprocessin_ the main channel input data stream (the uncompressed
pulse) through the adaptivc canceller. It was also shown that the leve! of degradation is independent
of whether pulse compression occurs before or after the adaptive canceller under assumption 3.

The exact expression [1 for pulse compression degradation requires computer assistance to
evaluate this expression. In Ref. 4, we derived a "rule of thumb" expression that is a good approxi-
mation of the exact expression.

This report considers the case where the desired signal input waveform (or code) can extend
over any number of processing batches of the adaptive canceller. An exact result for the adaptive
range sidelobe level is derived and its associated good approximation is given. In addition, it is
sh,, ,, :hn! he same analysis can be used to predict the canceller noise power level that i induced by
having the desired signal present in the canceller weight calculation.

2. BACKGROUND

Figure I shows a functional block diagram of an adaptive canceller f.., ,ovcd t, a ipu!:e
compressor. The adaptive canceiler linearly weights the auxiliary channels with weights that are cal-
culated from a batch of sampled input data. The main channel consists of desired signal plus noise

Manuscript approved April 4, 1991.
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MAIN CHANNEL (desired signal only)

IAUXILIARIES
S I

IF ~xl x2 se x N-1

IGS VK,N

S' (perturbed desired signal)

MATCHED
FILTER:s,

OUTPUT

Fig. I - GS canceller followcd by a matched filter

that may or may not be correlated with the auxiliary channels. It was shown [11 that when analyzing
the pulse compression degradation, it is only necessary to consider the interaction of the main
channel's desired signal with the random variables in the auxiliary channels (Fig. I). Thus, for
analysis purposes, the adaptive weights of x, n = 1, 2 .... N - I are only a function of the
desired signal s and the samples of x,,. Furthermore, as the number of independent samples goes to
infinity, the auxiliary adaptive weights go to zero Il ].

In Fig. 1, s represents the desired signal vector (or code), and x,. n = 1, 2 .... N - I
represents the nth auxiliary random data vector of length K. The canceller used is the Gram-Schmidt

(GS) algorithm 131. We denote it by GSK.N, where K is the number of samples per channel used to

calculate the canceller weights and N is the number of input channels (main and auxiliaries).

The pulse compressor is essentially the matched filter for a given radar waveform. Most of the
energy in the received radar waveform is compressed into a given single-range cell and. thus, the sig-
nal level can be increased significantly for detection purposes. However, some energy does leak into

the sideho,.. of the compressed pulse response, resulting in low gain in range cells outside of the
given range cell. If a target or piece of clutter is large enough. it can break through and h, (ete(td

in these range sduhbc , Ilsely indicating a target detct.tion or masking a real target. 'rhus. it is
highly desirable to maintain a low sidelobe response.

2
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Let r equal the 2L - I output vector of the pulse compressor. If no adaptive canceller is used
then it is straightforward to show that

r = S's, (1)

where

S = (SI, S2,...SL)T'

SL 0 0 ... 0

SL-I SL 0 ... 0

SL-2 SL-I SL ... 0

ST s1  s2  s 3  SL (2)

0 S1  S2 " SL-I

0 0 S1  SL -2

0 0 0 s,

and Tt denotes transpose and complex conjugate transpose, respectively. S is a L x (2L - !)
matrix called the autocorrelation function (ACF) matrix of s.

We assume for this analysis that the GS canceller processes data in blocks of K data samples per
channel. Thus, the desired signal vector may be spread across a number of sample blocks. To
analyze the resultant GS canceller output for the desired signal, we must subdivide the L length code
into M subcodes each of length K where the first and last subcodes may be partially zero-filled.
Define an augmented vector s .. such that

S,,10! = (S , S -() ..... s M ') . (3)

where each subcode vector s ''1, m = I. 2 ..., M is of length K. The leftmost elements of s"l) and
the rightmost elements of sM) may be partially zero filled. If K, and K, are the number of nonzero
filled elements of s(I and sM). respectively, then for M _> 2

L = (M - 2) K + KI + K,. (4)

For M i,

L = K1. (5)

3
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For example, if s = (1, -1, -1, 1, I, -1, -1, 1, 1) where L = 9, K = 3, then the input
signal vectors into a GS 3.N canceller could be s() = (0, 0, 1), S12) (-1, -1, 1),

s (1, -1, -1), and S(4) = (1, 1, 0). Here, M = 4and

s,,u k = (0, 0, 1, - 1, - 1, 1, 1, -1I, - 1, 1, 1, 0) r .

Each subcode vector is input to the GS canceller one at a time. Let s(""' be the resultant output
vector of the canceller for each input s'), m = 1, 2. M, and s,,,,, be the resultant augmented
output vectoi. Thus,

s -,,, = (s( I , f s 2)', .. . .  s M )T (6)

is the total result output vector of length KM. This re-ultant output vector is then inputted to the
matched filter of the vector s, or equivalently, s,,g. If we set r' equal to the response of s aug match
filtered with sug then

r StaugSaug (7)

where Su, is defined as the KM x (2KM - 1) augmented ACF matrix of s,ug.

The results and derivations presented are the same whether we use the augmented or non-
augmented notation. Hence, we assume that all vectors are augmented and drop the augmented desig-
nation.

Vector s is often chosen so that the matched filte. response hia. low sidelobes (i.e., r(m) < <

r(0) for rn * 0). However, if the desired signal is passed through a GS canceller structure, the
desired signal vector is perturbed and degradations occur in the matched filter response. Examples of
codes that have high compression ratios and low sidelobes are the Frank [51. Lewis and Kretschmer's
PI-P4 16), and shift register codes 17]. All of these codes have an ACF with all sidelobes well below
the matched response. Figure 2, for example, shows the ACF of the 100-element Frank code.

0-

-10
co'D
Zz
- -20
C3Z
0
a4 830

r -404w

LL
-50-

-60
1 40 80 120 160 200

SAMPLE NUMBER

Fig. 2 - Frank code autocorrclation function L = 100.
zero Doppler ,hitt and no bandwidth limitation
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Under the assumption that the signal vector is completely contained within a block of K samples
from which the adaptive weights are calculated (L _< K) [11, it was shown that the average pulse-
compressed sidelobe level after adaptive cancellation is given by

K(K + I)A i(K,N) K(K + I) ,
(K - N + 1)(K - N + 2) q (K - N + 1)(K - N + 2)

where

SL,,(I) is average pulse-compressed sidelobe level after adaptive cancellation of the /th range
sidelobe (sidelobes are numbered E I. I = 1. 2. these can be related directly to the
elements of r', for example, / = i are the sidelobes adjacent the match point)

SLq(I) is quiescent pulse-compressed sidelobe level of the ith sidelobe (K = o or equivalently no
adaptive cancellation before pulse compression: these can be related directly to the ele-
ments of r)

K is number of independent samples per channel used to calculate the adaptive canceller
weights

N is number of channels (main and auxiliaries)
s,.(/) is K - Ith column of the augmented ACF matrix, S,..... / I-# K. and

IIs,.(/)11 2 = S'.(I)s,(l).

We note that SL,,(I) and SLq,(I) are normalized to the mainlobe pulse compression gain (adapted or
quiescent, respectively) that is set equal to one or 0 dB.

The scalars A II(K,N) and A 12(K,N) are computed as follows. Consider the two parallel adap-
tive cancellers shown in Fig. 3. Define

u0,v 0 = arbitrary K-length main channel input vcttcrs,

UN.VN = K-length main channel output vectors.

x, = (x,,(1), x,(2) ._. x,,(K))T, n = 1, 2 .... N - 1. K-length random data vector

of the nth auxiliary channel.

The elements of x,,, i = 1. 2. N - I are assumed to have the following characteristics:

I . x,k ) tn = I ... ,N - 1. k = ... , K are identically distributed circular Gaussian com-
plex random variables (r.v.)

2. EIx,,(k)l = 0. El lx,,(k) 21 = I. where EI-' denotes expectation and I denotes magni-
tude.

3. Elx, (k I )x,*(k 2 )l = 0 unless nt = n- andk 1 = k,.

I I ' II I I I I5
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U0  xi x2. XN V XN 1

GSKN GSKN

UN. i  VN-1

Fig. 3 - Parallel N-input GS cancellers

Define

a 2 1
K - n (K - n)(K - n + 1)n01. N-2,and (9)

b,, = 1 (10)
(K - n)(K - n + 1)

It is shown in Ref. I that

E)~~~~~~ ~ ~ ~ I 0 uN112 2jA1(,) 2KN Ilv 1 V 12

F)1N1121,V11 A, I (K, N) A, r(KN)] IO12 (11Elllux_,II2llvN¢_lI [A,(2N A 2 2 (K,N) [lo21ol (I

where

[A1 (K. N) A 12(K, N) N-2 ra,, b,,].A21(K,N) A22(K,N)j =,I_ b,, a,,j"(2

Equations ( I) and (12) resulted from solving the following coupled recursive relationships that were

derived in Ref. 1:

E f I u ' , . v ,, . 1 2 = I I ,,v 1
E=2 u,,v,, 2 K - n (K - K- n + 1)

+ Ell II11211VII1 K (13)
6(K - )(K - n + 1)

+6
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El 1u,, + 1 I I2 vV + 11121 = Ell u,,v,, r21 (K - n)(K - n + 1)

+- E Iu lu I- v ,, ll2  I - n _ _g - ,,( 1 + 1 14 1
K - n (K -f)(A - n + 1)

where n = 0. 1 ... , N - 1.

Reference 4 derived a good approximation of SL,(l). It was shown that good approxiuatiom, of
A (K,N) and A 12(KN) are given by

A (K.N) [I N - 1 
u52

and

A 12 (K.N) " (K - N + 2)(N - 1) (16)
K 2 (K + 1)

In Ref. I it was shown that

2(N - I) X(N - 1)1
A,,(K.N) + A 2i(K.N) = I K + K V I1 17

K K(K+1)

A,,(K.N) = A22(K,N). 18)

and

A 12(K. N) = A :(K.N). I)

3. SII)ELOBE DEGRADATION: SIGNAL SEGMENTATION

Iii this section. we consider desired signals that are segmented and processed through the GS
canceller. We assume that the set of GS weights computed for each K x N data block is statisticall\
independent from block-to-block. Let the desired signal's input and output vectors S. and S\ I of a
canceller be segmented into M vectors such that

So = (sr'. S 2 '.... ) S,-,) (20)

and

s,\. = (,\ ' S. I . (21)

7
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Note that we have set So = s ands, - I = s'. Each s '") and s v"'. m = 1.2 ..., M is of length K
where the end vectors may be augmented by zeros to fill out the K-length vector. Note that sjp or
s% - can be considered augmented so that their length is KM. and that so is normalized so that
jjsoJ12 = I. Similarly. let s, be a column of the augmented ACF matrix defined as

, =. .... ,,, S!. (22)

Thus, an expression representing an output r of the matched filter can be given by

r - sfs, v._. (23)

and the average adaptive pulse compression level associated with s, is given by

El I s' ,x-t 21
SL1, I (24)El sk'lv-l i H21

We will derive good approximations of the numerator and denominator of this expression. The

above expectations are a function of two kinds of randomness: the first is the auxiliary channel data
and the second is where in time the code s begins with respect to the first segment. We evaluate the
above expectations first with respect to the auxiliary channel data and denote this expectation by
E,

To this end. E, 1 si'jsv - 121 is decomposed into terms dependent on the individual segments as

• Is  I 2 ' lm

Al2E,., ss I- E, S
I'- pi -1

Mi tn.) S ( IV

4- ,.:V , IS:' s v E ,- s, s \. 1 . (25)

It, I In - I

We used the tact that the auxiliar\ random variables are assumed independent from one batch of K.
N-length sample vectors to the next to separate the expectations in this double summation given in Eq.
(25 1

It is shovn in Appendix A that

N I OF I?__.s (26)

8
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Thus, Eq. (25) simplifies to

M N- 1] 2
E , I I s ', I v -EI i 2 1 E lsI ' I, - K ' -I

oi = I IK ,

N- ] 2 Im ) m ) m m j

K Is" SO N Is, . It7

However, it can be shown that

M Al
srl , '.. )1 i s O -1 S So (2. "s

In0 = I Ill, - I

Usino Eq. ( I ). it is straightforward to show that

Al A

E, I iS .1,i 2-1 = A (K, N) [s ' s0 -
r - iii - I

1A2(K. A) I Is/, 12 .1 isi" I . (29)
m -I

Substituting Eqs. (28) and (29) into Eq. (27) and taking the total expectation over all random
variables results in

Efls,s,,1 121 A11 (K. N) L N - E , s'")' is "S

+ L -- I J 'so S2.41 = 1
+ - I I . .. 112 11

+ A {2(K. N) E Er , " (30)
fil I

At the match point, s,. = so and the summations seen in Eq. (30) are equal so that

Es I sv 1 s 2 = I - N 2

N 2

+ A 1 (K. N) + ,,(K. N) - I K I31 ) h.., j.,,3fl

9
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However, in lieu of Eq. (17) and ss 0  1,

N I (K - N + 1)(N - 1) Ei 4 . (32)
Es-S~>- H- = - N K K(K + 1) ,M

The expectations seen in Eqs. (30) and (32) are dependent on the signal code. For a signal code
that has uniform amplitude elements, it is shown in Appendix B that

K I K + I L>K

L 3 + 3L2

L" i E" .. J ,, ; " (33)

, I L IL + IL <s:K.
3K 3KL

Note that if either expression given in Eq. (33) is substituted into Eq. (32). the second term of Eq.

(32) is small \with respect to the first term. Thus, a good approximation of El I s'_I 1 is given
by

El sisv H 1 - N 1 (34),sx~~ ~ -1 sx-]1 1 K(4

For unitform amplitude elements, the expectations seen in Eq. (30) may be upper-bounded by

, . In flct. this upper bound is a good approximation of the second expectation for

the near-in rane sidelobes (small I ). It may not be a good approximation of the first expectation
which is expected to be much smaller than the upper bound. Note also the form of the approximation
of 4 1 (K.,X given b% Eq. (15). As a result, it can be shown that the first term in Eq. (30) is small
kith respect to the sum of the second and third terms of the equation for the near-in range sidelobe

case. Hence. \%C delete this term from our approximation.

Close upper bounds to .4 II(K. N) and A 12(K. N) are given by Eqs. (15) and (16). respectively.

It the,c arc substituted into Eq. (30). then for the near-in range sidelobes

12 Ks i ... , - I t"'s-K + (K - N + 2)(N - 1) E j i")
s'%s", +. (35)

K K2K + I)

)ividing by El I s ., 1 12- as givn in Eq. (34) results in

, . =' , (K-N + 2)(N - I) E M A Sm"14(6SL,, s~, E + (36)
(K- N + 1)2(K + I) rnL-

10
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We approximate

(K- N + 2)(N- ) . N - 1 (37)

(K- N + I) 2(K + l) (K - N + l)K

Furthermore, E m=11IsWO14  can be approximated by a close upper-bound using Eq. (33).

This is

K

SL>K
E r _ ,s ,,1114 " (38)

tM I L _ K.

Thus, substituting Eqs. (38) and (37) into Eq. (36) results in
N-I

SL, (1) = SLq (1) + (KN +Il _, L > K, (39)

and
N-I

SL,,(I) = SLq()+ (K N+ IlK' L K. (40)

where SLq(l) and SL,,(I) were previously defined and I is small (near-in range sidelobe case).

We note that if the above approximations do not suffice in some cases (for example. / > > 1).
one can always use the exact formulation of SL,,(1) given by the ratio of the expressions given by Eqs.
(30) and (31).

4. RESULTS

In this section. we calculate the number of independent samples per channel K*dn necessary for
the average transient sidelobe level of the maximum quiescent sidelobe level defined by SL, to be

within 3 dB of SLq. We assume that the maximum quiescent sidelobe level occurs in the near-in
range sidelobes (which is normally the case). so that the approximations given in the previous section
are valid. We use this as a performance measure of convergence. If the average adaptive sidelobe
level SL,, were plotted vs K, it would be found that SIL,, monotonically decreases with K and is
asymptotic with SLq as K - oo. The K = K3dB point is representative of the "knee" of this curve
(where SL, decreases slowly with increases in K).

To find KIB, the following two equations (which result from Eqs. (39) and (40). respectively)

are solved for K3dB:

2 SLq =S Iq + N I . L > K3dB (41)
q(K3diB - N + ilL

I1
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and

- -N- - L <K3dB. (42)
2 St = S-tq +- (K3dB - N + I)K L

Solving Eqs. (41) or (42) for K3dB results in

K3dB = + - (N - 1). L > K3dB (43)
L - SLq

and

K3MB N+ I (N - 1)j L K3dB. (44)

Note that the solution for K3dB depends on this solution satisfying the inequalities given with each of
the above solutions. If both inequalities are satisfied, then obviously the first solution given by Eq.
(43) is chosen because this solution is less than the solution given by Eq. (44). Appendix C shows
that at least one of the solutions given above is valid.

It is also shown in Appendix C that Eq. (43) is the solution for K3dB if
Nau.a

-q > L(L - N,,.) and L > Na,, (45)

where N,,,,, = N - 1. If either condition given by Eq. (45) is not true, then the solution given by
Eq. (44) is valid.

We can rewrite Eqs. (43) and (44) as

_____ I
S=1 + L > K3dB, (46)N,,.- L •SL q

and

____ I + I/ ~ B  .'K 1dB =+L f K AB .

N.,,, 2 2 N u,, • SLq

In Fig. 4. KjdH /N,,,, is plotted v s L - SL,. Again. this solution is valid if Eq. (45) holds, In Fig.
5. Kij /N,,,, is plotted vs N,,1, • SLq. This solution is valid if Eq. (45) does not hold.

For example, let SLq = 10 - 3 (or -30 dB), N,,,, = 10. and L = 100. In this case. Eq. (45)
does not hold. so we use Fig. 5 to find KIdn /N,,.. which approximately equals Ii. As another
example, let SL, = 10 -2 (or -20 dB). N,,, = 10. and L = 100. In this case, the conditions given
by Eq. (45) hold. We use Fig. 4 to find K dB /N(,,L, = 2.

12
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1000

N
< aux

SL>q and L > N
q SL > L(L-N) aux

*L > K 3dB

100

z

cn

10

1
10- 1-2 10-1 1 10

CODE LENGTH * QUIESCENT SIDELOBE LEVEL, L .SL

Fig. 4 -K,,, vs L SLq

1000

N

aux

*L !5 K 3dB
100

x
:3

10

1031-21 - 10
NUMBER OF AUXILIARIES *QUIESCENT SIDELOBE LEVEL, Nau * §L

Fig. 5 -K 1 N,,j/ ,_ vs N,,,, S1,1
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By examining the solutions for K3dB / NaL, given in Figs. 4 and 5, we make the observations

that for K3dB /Naur = 2, either N,,,,, • SLq or L - SLq must be approximately equal to one.

As noted in Refs. 1 and 4, the preceding analysis of pulse compression ap' canceller interac-
tions can also be applied to quantify the canceller degradation caused by the preser,e of a desired sig-
nal in the samples used to calculate the adaptive canceller weights. Set

N-1 1 L>K (48)

(K - N + I)L '

ASL,, (K, N) =

N- I

(K-N + )K L :5 K. 
(49)

If the desired signal has the power a , after pulse compression, then the maximum of the average
power residue caused by signal in the K - I range bins not containing the signal can be shown from

our analysis to approximately equal a2ASLj(K.N) plus possibly the signal power caused by the quies-

cent compressed sidelobes. Let a,,i, be the quiescent output noise power level of the canceller (no

desired signal). Define

6 = ASL,(KN). (50)
(T1min

If 6 > 1. then the signal induced power will be greater than the quiescent output noise power of the

canceller. Hence. it is desirable to choose the number of independent input samples K so that 6 _s I.
Set K = KO for when 6 = 1. It is straightforward to show that

N I L > KO (51)
L 1.11 n

I + l

N- L 2 (52)

2 2 ' ,
J

We note that ao /on equals the output signal-to-noise power ratio (S/N),,, of the adaptive canceller.

Thus. Eqs. (51) and (52) reduce to

#C

N - + L , L > K0  (53)

K)

N- I N- 1 -54t
+ V + (N - l) S L :s K).

2 2 N mi

14
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For the radar designer there is the choice of where to put the pulse compressor: before or after
the canceller. A disadvantage of placing it before the canceller is that a pulse compressor must be
placed in each antenna channel (main and auxiliaries) to maintain channel match (mismatched chan-
nels degrade canceller performance). Another disadvantage is that the pulse compressor must have
the dynamic range of the interference (possibly clutter and jamming) that has yet to be cancelled.
These disadvantages do not occur if the compressor is placed after the canceller. However. as wke
have seen, a disadvantage of placing the compressor after the canceller is that the range sidelobes of
the compressed pulse increase because a finite number of samples are used to compute the canceller
weights.

It should be pointed out, however, that this effect also occurs if the desired waveform is
compressed before the canceller. In this case, it was shown 14] that the ratio of signal-induced power
to the quiescent-noise power level is given by

o N - I
b(pc before) = 2- N-I . L < K. (55)

m (K-N+ 1)K

Note that this is identical for the expression of 6 (pc after) if L -< K (see Eqs. (49) and (50)).
Hence, for waveform codes that have length less than the processing batch length (L !_ K, it is
desirable to pulse-compress after cancellation.

However, for L > K, the issue is not so clear-cut. Even though 6 (pc after) < b (pc before)
for L > K, we must remember that the signal induces noise over KM = L samples of output data.
Thus, for M _> 2, more samples are affected by degradation caused by performing pulse compression
after cancellation. As a result, for L > K. a trade-off study is necessary to determine whether one
does pulse compression before or after cancellation. The cost function associated with this trade-off
study will depend directly on the user's system parameters and needs.

One final note. For some applications, the matched filter is replaced b\ a filtering scheme
whereby the range sidelobes are reduced at the expense of signal gain at the match point. However.
the results derived in this report are also valid for the use of any filter other than the matched filter
s5. We could replace the so seen in the "matched filter" block in Fig. I with a general weighfing

function given by the L length vector a with elements a (. a. a . In our analysis, we would
replace the S matrix defined by Eq. (2) with an A matrix whose elements are given by replacing the
s s with a s in Eq. (2). The vector s, then would be taken to he any column in .4 and the analysis
follows as given.

5. SUMMARY

This report has presented an exact expression for the perturbed range sidelobe level of a
compressed pulse that has been preprocessed through an adaptive canceller. This result is a generali-
zation of Refs. I and 4 where the signal was assumed to be completely contained within the
canceller's processing batch. In this report, we allow the signal to extend over an arbitrary number
of canceller processing batches. A good approximate expression was also obtained for evaluating the
perturbed range sidelobe level. The numbe of independent samples per channel (main and auxi-
liaries) necessary so that the average adaptive range sidelobe level is within 3 dB of the quiescent
range sidelobe level was derived. Furthermore. the same analysis was used to predict the canceller
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noise power level that is induced by having the desired signal present in the canceller weight calcula-
tion. Placement of the pulse compressor betore or after the canceller was also considered. It was
shown that if the desired waveform's code length L is less than or equal to the canceller's processing
batch width K, it is desirable to place the pulse compression after the adaptive c,:cellcr. If L > K.
the issue is not so clear-cut, and a trade-off study is necessary.
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Appendix A

DERIVATION OF EQ. (26)

It is shown in Ref. 8 that if x0 is the main channel K-length vector, then the resultant output
vector Yo through a GSKN canceller can be represented as

Yo = Gx0 , (A1)

where G is the GS complementary projection matrix and is given by
tt

I = I
ZZj Z2Z2 ZN - IZN -1

In Eq. (A2), 1K is the K x K identity matrix and z,,, n = 1 .... N - I is a set of orthogonal
vectors that is an orthogonal basis for the original auxiliary K-length input vectors. If we assume that
the input samples are zero mean independent, identically distributed r.v.s. it is straightforward to
show

E = K IK for all it. (A3)

Thus

E[G = 1 - N- 1] 1K' (A4)

Thus, for arbitrary K-length vector u

Elu'yol = E~u'Gxo4 (A5)

= u'EJGJx0

- 1 N- 1J

17 K uxo.
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Appendix B

DERIVATION OF EQ. (33)

Al
In this appendix we derive the expected value of Y- Is0 ii' assuming the code element amipli-

tudes are uniform. For any M we can write

) K(2 K2 K2,M

'E L(-2 - + > I f+M

LIM= I

We distinguish between the two cases. L > K and L :: K.

Case 1: L > K

For this case M : 2. Thus from Eq. (B31). if we find expressions for EIMI. EIK'j and I-2K;'1

we can find /3. Now

L = (M -2)K + K , + K, (132)

Therefore

ElM - 21 - ~(L - EIK, I - ElK, 1). (133)

Thus. if we can obtain ElK1 I and EIK, 1. then EIM -21 can be found by, using Eq. (133). R., sNIl-
metry

EIK, I = EIK,1. E1K'I = EIK;'J. (134)

Let ProbAK 1 ij be the probability that K, = v, where v ca. rangze from 1. 2...K. The start-
ing position of the code within the first code seemient is uniforml'y distributed, so that

ProbA. LiI= .(5

K

19



KARL GERLACH

Thus

K K k i
EIK1 I = E k ProbK, kj = E - = -- (K + 1), (B6)

k=1 k=l

K 2K1k K i

EIKI = k2 ProbK,,kl = - -(K + I)(2K + 1). (B7)
k=I k=1 6

Using Eqs. (B6) and (B7) in Eq. (B3).

ElM - 21 = 1. (B8)
K

Using Eqs. (B8). (B7). and Eq. (B4). we see that

K 2  L - I - + I (K + I)(2K + 1)(9)
L3 L2 K 3 L 2 9

_ K I1 K] + l 2
L 3 L 3L2

Case 2: L K

For this case M = I or 2. For L < K, we start by computing two probabilities: the probabil-
ity that K, = L (or equivalently, M = i) denoted by ProbIKI = LI and the probability that K, =I

where v is a positive integer less than L (or equivalently, M = 2) denoted by Problv and v < LI. It
is straightforward to show that

K-L±+I

ProbIKj = L} = K (B10)K

and

Problv and v < Lj = Problv I v < LI Problv < L)

I L-I

L-I K

1 (BII)
K

Thus

EIK 21 =L L 2  K -L + I + k k2

K Ik= K

=L 2  K L +] + - I- (L - I)L (2L - I). (B12)
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Note for L < K that Eq. (B4) does not hold. Let ProbK, vI be the probability that K2 = v wnere

v = 0, 1 ... , L - 1. It is apparent that

K-L+ I
ProbK,101 = Prob[K = Ll = K (B13)

and for v > 0,

ProbKlvI = Probjv v ' > 01 Probiv > 01,

I L-I 1 (B14)
L-I K K

Thus

L- k2 1 1 1
E{K 2 , k (L - I)L (2L - 1). (B15)

k=1 K K 6

Using Eqs. (B12) and (B15), it can be shown that

3=E 
K  + K

K -L + 1 + (L - I)L (2L - 1)
K 3 KL'

1IL i
K 1 + - (B16)

3 K 3K
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Appendix C

CONDITIONS FOR CONVERGENCE SOLUTIONS

If the solution given by Eq. (43) is valid, then L must be greater than K3dB . 1 bus

K 3dB = NaIL I + < L. (C 1)

Reducing Eq. (CI) further

__ LI < - i. C2

L " SLq N,1.1

Now if L < N,,,a, Eq. (C2) does not hold. Thus for Eq. (43) to be a valid solution. L > %",,,,
Equation (C2) can be further simplified to show that

NllL\

S~q >(C3)
"l L(L - Naux)

We show that one of the solutions given by Eqs. (43) or (44) is valid. We do this by ,hovin2
that if no solution exists, a contradiction results. Assume no solution exists. Thus

K3dB= N- 1 L. (C4)

and by using Eq. (44) with N,,,, = N - 1.

K1ds = N N + < L. (C5)K~d =N,,,, 2 +  2 + N,,, • SL,,

Using Eq. (C5). we can show that L/N(,,,, > I.

Solving for SL, in Eq. (C4) results in
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and solving for SLq in Eq. (C5) results in

1SLq (C7)
N a ut: L I1

N Naa 2 2

Thus. Eqs. (C6) and (C7) imply that

I> - 2 (C8)

L L L I N1I

Equation (C8) can be simplified to

L L L (C9)
N,,a, Nr N,,.,, 2 2

I -~ - -(9

Set a = LIN .,. Thus

< 
2

i. _ (CIO)
L 2J 2

1

This inequality results in the contradicting inequality. 0 < -- . Hence, the original assumption that

no solution exists for KsdB /N,,,,, must be false.

24


